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Motivation & Problem Definition (1/3)
 Large-scale data-intensive applications in HPC and AI require distributed processing in a 

multi-node environment
• At this time, there is large and complex communication between nodes, and providing sufficient memory 

capacity for these applications is one of the necessary conditions for improving performance.

 For example, LLM applications perform distributed training because the huge size of 
models and training data [1]

• AllGather and ReduceScatter are used as the main collective communications 
• As the data and model size increases, the collective communication message size increases [2]
• However, AllGather and ReduceScatter have problems with increased latency for large messages [3]

3Message sizes of Allgather and Reduce-Scatter in
PyTorch FSDP Training on 16 GPUs [3]

Message Size Distribution for various networks [2]

A snapshot of ZeRO-Infinity training [1]



Motivation & Problem Definition (2/3)
 As the message size increases, communication latency of traditional allgather also increases
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Experimental Results on ETRI’s QEMU-based 4 Computing Nodes
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Motivation & Problem Definition (3/3)
 We believed that we could address this issue by using the CXL interconnect and the CXL shared memory pool device 

in a single rack, which provide faster communication latency compared to traditional multi-node interconnects using 
Ethernet or InfiniBand.
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[4]

Because the memory access latency for CXL-attached far 
memory across nodes can be the same as the latency for 
CXL-switched memory within a single node, which is 
about three times faster than the latency of the 
InfiniBand interconnect.



Project Goals 
 The goal of this study is to enhance the MPI Inter-Node collective communication 

performance in a multi-node environment connected by CXL

 Two Specific Goals
• Goal 1. Utilizing the CXL shared memory pool for collective communication

 1st phase: Sept. 2023 - Aug. 2024

• Goal 2. Utilizing the intelligent CXL switch for collective communication
 2nd phase: Sept. 2024 - Aug. 2025
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 To achieve above goals, we proposed iMEX (intelligent Memory EXpander)



Project Goals 
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Roles of ETRI and OSU
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Research 
Area Focus Research Item

OSU Goal 1
Beyond Rack-

Scale CXL 
Memory Pool

1 Improving collective communication performance by utilizing the beyond rack scale CXL 
memory pool device

2 Identify and develop promising demonstration applications to showcase the CXL-based 
collective communication proposed in OSU’s research item 1

ETRI

Goal 1
Single Rack-

Scale CXL 
Memory Pool

1 Proposed Approach 1. CXL SHM-based AllGather

Goal 2 Intelligent CXL 
Switch 2 Proposed Approach 2. In-CXL Switch ReduceScatter



Proposed Approach for Goal 1
CXL SHM-based AllGather

− Design and implement AllGather utilizing the CXL shared memory pool as the collective communication buffer
− Measure Allgather latency with OMB for performance validation
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Implementation for CXL SHM-based AllGather
 We developed five CXL memory APIs that are utilized for the CXL SHM-based allgather

• MPI ranks running on different computing nodes can utilize the CXL shared memory pool device as the 
communication buffer for collective communication
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① cxlmemoryInitialize ()
② cxlmalloc (size)
③ cxlwrite (data, size, offset)
④ cxlread (data, size, offset)
⑤ cxlfree ()

CXL Memory APIs

Host OS (Ubuntu 22.04)

129.254.180.235

QEMU

CPUMM

4GB file
/dev/mem0

cxl-node 0 cxl-node 1

CXL Shared Memory Pool Device

CXL T3
MEM

CXL T3
MEM

CPUMM

CXL T3
MEM

CPU MM

cxl-node0 cxl-node1

QEMU Guest OS of Flight Simulator

P0 P1

CXL

API
MEM



Implementation for CXL SHM-based AllGather
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 We implemented the CXL SHM-based allgather in the allgather.c file of MVAPICH2 2.3.7 

 We implemented the cxl_memory_manager.c in the coll directory and cxl_memory_manager.h in the include directory
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2. MPI 
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1. AllGather
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5. MPI 
Finalize
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★
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Experimental Setup for CXL SHM-based AllGather
 Software emulator 

• Flight Simulator [5], which emulates the Multi-Node CXL Shared Memory Pool Device in QEMU 

 Experimental Environment
• Host Machine

 CPU : AMD EPYC 9754 128-Core Processor
 Main memory : 792 GB

• Guest Machine
 QEMU branch cxl-2024-03-05 [6]
 OS : fedora release 38 (kernel version : vmlinuz-6.3.7-200.fc38.x86_64)

 Benchmark Suite
• OSU Micro Benchmarks [7]
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Experimental Items for CXL SHM-based AllGather
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Performance metrics to be measured Metric (y-axis) Variable (x-axis) Fixed Parameters

1 Performance with increasing number of nodes

OMB 
AllGather

latency

# of nodes (guest OS)
(e.g., 2, 4, 8, 16)

1 PPN

2 message size

2 Performance with increasing PPN PPN
(e.g., 1, 2, 4, 6) 

1 # of nodes

2 message size

3 Performance with increasing message size message size
(e.g., 512KB-32MB)

1 # of nodes

2 PPN

※ PPN (Process Per Node)



Experimental Results for CXL SHM-based AllGather

 Performance as the number of nodes increases
• The results showed that with 10 nodes, the maximum performance improvement was 16.92 times
• With 4 nodes, the minimum performance improvement observed was 6.65 times

14

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

4 6 8 10

La
te

nc
y 

(m
s)

Number of Nodes

OMB Allgather Latency (PPN: 4, M: 32MB)

Traditional CXL SHM-based Allgather

16.92 x

6.65 x



Experimental Results for CXL SHM-based AllGather

 Performance as the PPN increases
• The results showed that with 6 PPN, the maximum performance improvement was 10.03 times
• With 1 PPN, the minimum performance improvement observed was 1.77 times
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Experimental Results for CXL SHM-based AllGather

 Performance as the message size increases
• For mid-sized messages, we achieved a maximum performance improvement of 4.99 times
• For large-sized messages, we achieved a maximum performance improvement of 6.65 times
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Road Map
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 We aim to improve the performance of data-intensive applications in multi-node systems
Now, we are here

Stage 1. MEX
• Commercial FPGA board-based MEX
• Up to 32GB expanded memory
• Prototype version of accelerator
• Support a single node

Host
Processor Accelerator

(protype)

Expanded
MemoryPCIe

Compute Node
Commercial FPGA 
board-based MEX

Stage 3
• Improvement the scalability of iMEX
• Multiple iMEX devices will be connected 

to a CXL Switch
• Support more complex topology

Stage 2. iMEX
• Support multi-node system using CXL
• Accelerate MPI collective operation 

using dedicated accelerator
• Use CXL Memory Pool for expanded 

memory capacity

Accelerator

Expanded
MemoryCXL

Intelligent
CXL-Switch 

based on MEX

Host
Processor

Compute Node 0

Host
Processor

Compute Node 1

iMEX

※ MEX (Memory EXpander) ※ iMEX (intelligent MEX)

CXL

Compute 
Node 0

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3

IMEX

CXL
Switch



Conclusion
 We expect to enhance the collective communication performance utilizing iMEX’s MPI 

Computation Accelerator

 We expect to Improve the Memory Utilization for HPC systems utilizing CXL Memory 
Pool as a MPI Communication buffer

 We expect to Improve the AI and HPC Application performance by reducing the 
Communication Cost

 We plan to showcase the research progress of iMEX at SC24 
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Thank You!
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