
1

Enhancing the MPI Collective Communication Performance
utilizing iMEX (intelligent Memory EXpander)

Contents
 Motivation & Problem Definition

 Project Goals

 Roles of ETRI and OSU

 Our Approach

 Road Map

 Conclusion

2

Motivation & Problem Definition (1/3)
 Large-scale data-intensive applications in HPC and AI require distributed processing in a

multi-node environment
• At this time, there is large and complex communication between nodes, and providing sufficient memory

capacity for these applications is one of the necessary conditions for improving performance.

 For example, LLM applications perform distributed training because the huge size of
models and training data [1]

• AllGather and ReduceScatter are used as the main collective communications
• As the data and model size increases, the collective communication message size increases [2]
• However, AllGather and ReduceScatter have problems with increased latency for large messages [3]

3Message sizes of Allgather and Reduce-Scatter in
PyTorch FSDP Training on 16 GPUs [3]

Message Size Distribution for various networks [2]

A snapshot of ZeRO-Infinity training [1]

Motivation & Problem Definition (2/3)
 As the message size increases, communication latency of traditional allgather also increases

4

Experimental Results on ETRI’s QEMU-based 4 Computing Nodes

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

nc
y

(μ
s)

Message Size (Bytes)

OMB Allgather Latency (N: 4, PPN: 8 M: 2-16K bytes)

5000

5005000

10005000

15005000

20005000

25005000

30005000

35005000

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M

La
te

nc
y

(μ
s)

Message Size (Bytes)

OMB Allgather Latency (N: 4, PPN: 8 M: 32K-32M bytes)

Motivation & Problem Definition (3/3)
 We believed that we could address this issue by using the CXL interconnect and the CXL shared memory pool device

in a single rack, which provide faster communication latency compared to traditional multi-node interconnects using
Ethernet or InfiniBand.

5

ⓐ
ⓑ
ⓒ

ⓑ DDR (CXL Switched)

CXL Switch

CXL
MEM

CXL
MEM

CPU CPU

300-400 ns

mem mem

Node

(Proposed Architecture) CXL-attached far memory

CXL Switch

CXL
MEM

CXL
MEM

CPUmem

CXL Switch

CXL
MEM

CXL
MEM

CPU mem

Node 1Node 0

Inter-Node
CXL Switch

CXL
MEM

CXL
MEM

CXL Shared Memory Pool Device

300-400 ns

ⓐ DDR (CXL)

CXL
MEM

CXL
MEM

CPU CPUmem mem

Node

170-250 ns

CPUmem

Node 0 Node 1

PCIe

NIC

CPU mem

PCIe

NIC

2-4 μs (800g ethernet)
< 1 μs (InfiniBand)

ⓒ Network-attached far memory

[4]

Because the memory access latency for CXL-attached far
memory across nodes can be the same as the latency for
CXL-switched memory within a single node, which is
about three times faster than the latency of the
InfiniBand interconnect.

Project Goals
 The goal of this study is to enhance the MPI Inter-Node collective communication

performance in a multi-node environment connected by CXL

 Two Specific Goals
• Goal 1. Utilizing the CXL shared memory pool for collective communication

 1st phase: Sept. 2023 - Aug. 2024

• Goal 2. Utilizing the intelligent CXL switch for collective communication
 2nd phase: Sept. 2024 - Aug. 2025

6

 To achieve above goals, we proposed iMEX (intelligent Memory EXpander)

Project Goals

7

• # of Communication :𝒏𝒏𝟐𝟐
• Communication Latency : 2-4 𝝁𝝁𝒔𝒔 (100 GE)

Communication
• # of Communication : 𝒏𝒏
• Communication Latency : 300-400 𝒏𝒏𝒔𝒔

(CXL Switched DDR)

• MPI Computation on CPU
• # of Computation :𝒏𝒏 Computation

• MPI Computation on Dedicated Accelerator
• # of Computation : 𝟏𝟏

• Low Memory Utilization • High

Memory Pool

Main memory (512GB) N Computing Node

MPCXL memory (512GB) 𝑛𝑛 : # of Processes

: Data Movement

(AS-IS) Conventional Collective Communication

Data-Intensive Applications of AI and HPC fields

(TO-BE) Proposed Collective Communication
All-Reduce

Total
3TB

Intelligent CXL Switch (iMEX)

MP

N1

N2

N0

N3

MP

N1

N2

N0

N3

time

Network Switch

MPI
Compute

N1

N2

N0

N3

N1

N2

N0

N3

Total
4TB

MPI
Compute

MPI
Compute

MPI
Compute

time
Prob. 1

Prob. 2

Prob. 3
CXL Memory Pool

Manager

Appro. 1

Appro.3

MPI Computation
Accelerator

Appro. 2

※ Appro.3. MVAPICH2 optimized for IMEX Key Concept of iMEX

Roles of ETRI and OSU

8

Research
Area Focus Research Item

OSU Goal 1
Beyond Rack-

Scale CXL
Memory Pool

1 Improving collective communication performance by utilizing the beyond rack scale CXL
memory pool device

2 Identify and develop promising demonstration applications to showcase the CXL-based
collective communication proposed in OSU’s research item 1

ETRI

Goal 1
Single Rack-

Scale CXL
Memory Pool

1 Proposed Approach 1. CXL SHM-based AllGather

Goal 2 Intelligent CXL
Switch 2 Proposed Approach 2. In-CXL Switch ReduceScatter

Proposed Approach for Goal 1
CXL SHM-based AllGather

− Design and implement AllGather utilizing the CXL shared memory pool as the collective communication buffer
− Measure Allgather latency with OMB for performance validation

9 9

Conventional. Network-based AllGather Proposed. CXL SHM-based AllGather

time

0

0

1

1

2

2

A B

3

3

C D

A B C D A B C D A B C D A B C D

0

0

1

1

2

2

A B

3

3

C D

A B C D A B C D A B C D A B C D

CXL
SHMEM

A B C D

Expect performance improvement by
• reducing the number of communications
• achieving performance gains with CXL

Implementation for CXL SHM-based AllGather
 We developed five CXL memory APIs that are utilized for the CXL SHM-based allgather

• MPI ranks running on different computing nodes can utilize the CXL shared memory pool device as the
communication buffer for collective communication

1010

① cxlmemoryInitialize ()
② cxlmalloc (size)
③ cxlwrite (data, size, offset)
④ cxlread (data, size, offset)
⑤ cxlfree ()

CXL Memory APIs

Host OS (Ubuntu 22.04)

129.254.180.235

QEMU

CPUMM

4GB file
/dev/mem0

cxl-node 0 cxl-node 1

CXL Shared Memory Pool Device

CXL T3
MEM

CXL T3
MEM

CPUMM

CXL T3
MEM

CPU MM

cxl-node0 cxl-node1

QEMU Guest OS of Flight Simulator

P0 P1

CXL

API
MEM

Implementation for CXL SHM-based AllGather

11

 We implemented the CXL SHM-based allgather in the allgather.c file of MVAPICH2 2.3.7

 We implemented the cxl_memory_manager.c in the coll directory and cxl_memory_manager.h in the include directory

1111

2. MPI
Initialize

3. Channel
Initialize
(TCP/IP)

4. Perform Collective Communication

1. AllGather
Execution

5. MPI
Finalize

Intra-Node IPC : Local Mem Copy

src/mpi/coll/cxl_memory_manager.c

src/mpi/coll/cxl_memory_manager.c

★
CXL SHM-based Allgather

cxlWrite

cxlRead
Inter-Node IPC : CXL Shared Memory W/R

Inter-Node IPC : TCP-IP Send/ Recv

Experimental Setup for CXL SHM-based AllGather
 Software emulator

• Flight Simulator [5], which emulates the Multi-Node CXL Shared Memory Pool Device in QEMU

 Experimental Environment
• Host Machine

 CPU : AMD EPYC 9754 128-Core Processor
 Main memory : 792 GB

• Guest Machine
 QEMU branch cxl-2024-03-05 [6]
 OS : fedora release 38 (kernel version : vmlinuz-6.3.7-200.fc38.x86_64)

 Benchmark Suite
• OSU Micro Benchmarks [7]

12

Experimental Items for CXL SHM-based AllGather

13

Performance metrics to be measured Metric (y-axis) Variable (x-axis) Fixed Parameters

1 Performance with increasing number of nodes

OMB
AllGather

latency

of nodes (guest OS)
(e.g., 2, 4, 8, 16)

1 PPN

2 message size

2 Performance with increasing PPN PPN
(e.g., 1, 2, 4, 6)

1 # of nodes

2 message size

3 Performance with increasing message size message size
(e.g., 512KB-32MB)

1 # of nodes

2 PPN

※ PPN (Process Per Node)

Experimental Results for CXL SHM-based AllGather

 Performance as the number of nodes increases
• The results showed that with 10 nodes, the maximum performance improvement was 16.92 times
• With 4 nodes, the minimum performance improvement observed was 6.65 times

14

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

4 6 8 10

La
te

nc
y

(m
s)

Number of Nodes

OMB Allgather Latency (PPN: 4, M: 32MB)

Traditional CXL SHM-based Allgather

16.92 x

6.65 x

Experimental Results for CXL SHM-based AllGather

 Performance as the PPN increases
• The results showed that with 6 PPN, the maximum performance improvement was 10.03 times
• With 1 PPN, the minimum performance improvement observed was 1.77 times

15

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

1 2 4 6

La
te

nc
y

(m
s)

ppn

OMB Allgather Latency (N: 4, M: 32MB)

Traditional CXL SHM-based Allgather

10.03 x

1.77 x

Experimental Results for CXL SHM-based AllGather

 Performance as the message size increases
• For mid-sized messages, we achieved a maximum performance improvement of 4.99 times
• For large-sized messages, we achieved a maximum performance improvement of 6.65 times

16

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

512K 1M 2M 4M 8M 16M 32M

La
te

nc
y

(m
s)

Message Size (Bytes)

OMB Allgather Latency (N: 4, PPN: 4)

Traditional Allgather CXL SHM-based Allgather

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

32K 64K 128K 256K

La
te

nc
y

(m
s)

Message Size (Bytes)

OMB Allgather Latency (N: 4, PPN: 4)

Traditional Allgather CXL SHM-based Allgather

6.31 x

6.65 x

4.99 x4.10 x

Road Map

17

 We aim to improve the performance of data-intensive applications in multi-node systems
Now, we are here

Stage 1. MEX
• Commercial FPGA board-based MEX
• Up to 32GB expanded memory
• Prototype version of accelerator
• Support a single node

Host
Processor Accelerator

(protype)

Expanded
MemoryPCIe

Compute Node
Commercial FPGA
board-based MEX

Stage 3
• Improvement the scalability of iMEX
• Multiple iMEX devices will be connected

to a CXL Switch
• Support more complex topology

Stage 2. iMEX
• Support multi-node system using CXL
• Accelerate MPI collective operation

using dedicated accelerator
• Use CXL Memory Pool for expanded

memory capacity

Accelerator

Expanded
MemoryCXL

Intelligent
CXL-Switch

based on MEX

Host
Processor

Compute Node 0

Host
Processor

Compute Node 1

iMEX

※ MEX (Memory EXpander) ※ iMEX (intelligent MEX)

CXL

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

IMEX

CXL
Switch

Conclusion
 We expect to enhance the collective communication performance utilizing iMEX’s MPI

Computation Accelerator

 We expect to Improve the Memory Utilization for HPC systems utilizing CXL Memory
Pool as a MPI Communication buffer

 We expect to Improve the AI and HPC Application performance by reducing the
Communication Cost

 We plan to showcase the research progress of iMEX at SC24

18

References
1. Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep

learning." Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 2021.

2. KLENK, Benjamin, et al. An in-network architecture for accelerating shared-memory multiprocessor collectives. In:
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020. p. 996-1009.

3. Zhou, Qinghua, et al. "Accelerating distributed deep learning training with compression assisted allgather and
reduce-scatter communication." 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2023.

4. "Enfabrica Scaling CXL Memory Using High Speed Networking ",
https://www.youtube.com/watch?v=YdJWhqeT5DM

5. “MemVerge Flight simulator, ” https://memverge.com/cxl-qemuemulating-cxl-shared-memory-devices-in-qemu/

6. “QEMU-CXL branch,” https://gitlab.com/jic23/qemu

7. “OSU Micro-Benchmarks,” https://mvapich.cse.ohio-state.edu/benchmarks/

19

https://www.youtube.com/watch?v=YdJWhqeT5DM
https://memverge.com/cxl-qemuemulating-cxl-shared-memory-devices-in-qemu/
https://gitlab.com/jic23/qemu
https://mvapich.cse.ohio-state.edu/benchmarks/

Thank You!

20

Contacts : ahnhy@etri.re.kr

mailto:ahnhy@etri.re.kr

	Slide Number 1
	Contents
	Motivation & Problem Definition (1/3)
	Motivation & Problem Definition (2/3)
	Motivation & Problem Definition (3/3)
	Project Goals
	Project Goals
	Roles of ETRI and OSU
	Proposed Approach for Goal 1
	Implementation for CXL SHM-based AllGather
	Implementation for CXL SHM-based AllGather
	Experimental Setup for CXL SHM-based AllGather
	Experimental Items for CXL SHM-based AllGather
	Experimental Results for CXL SHM-based AllGather
	Experimental Results for CXL SHM-based AllGather
	Experimental Results for CXL SHM-based AllGather
	Road Map
	Conclusion
	References
	Slide Number 20

